G.EDI.S. s.r.l.

sede legale: Via Frattina, 10 - 00187 Roma

DIGANISMO DI CERTIFICAZIONE AZIENDA CERTIFICATA ISO 9001:2015 sede amministrativa: P.zza Martiri della Libertà, 54 – 02047 POGGIO MIRTETO (RI) Tel 0765/441102 (St) 0765/206263 (Fax) 329/9171242 (Cell) e-mail: info@gedis-srl.com

COMUNE DI ROCCA DI PAPA (RM)

Relazione geologica preliminare inerente lo studio di fattibilità

per la realizzazione di un asilo nido,

mediante demolizione e ricostruzione di un edificio

sito in Viale Europa,

di proprietà comunale Rocca di Papa (RM)

(F.5, Part.lla 291)

ROMA, Maggio 2021

Dott. Geol. David Simoncelli

E' riservata la proprietà di questo elaborato che potrà esse re riprodotto, anche in parte, solo dopo autorizzazione scritta

PREMESSE

In ottemperanza ai criteri della Legge vigente è stata redatta una relazione geologica preliminare riguardante le caratteristiche del terreno in cui è previsto lo studio di fattibilità per la realizzazione di un asilo nido, sito in Viale Europa, di proprietà del Comune di Rocca di Papa (RM).

Sulla base dei dati forniti dal progettista, l'intervento consiste nella demolizione e ricostruzione di un edificio di proprietà comunale denominato "Nuova Casa delle Fate", per la realizzazione di un asilo nido. Il progetto di base prevede un asilo di tre sezioni, distribuito su un unico piano fuori terra, ad eccezione dei locali per il personale, uffici e deposito. La superficie utile totale prevista è di circa 635 mq.

Allo scopo di ricostruire l'andamento stratigrafico del sito e di valutare le caratteristiche geotecniche e sismiche locali del terreno, e, tenendo conto che il sito in esame, in ottemperanza al R.R. n.7 del 16 Aprile 2021 della Regione Lazio (D.G.R. 189/2021) - Allegato C, ricade in "Livello di vulnerabilità Medio", sono state pertanto eseguite le seguenti indagini minime:

- a) un rilevamento geologico e geomorfologico di dettaglio;
- b) acquisizione dati tratti da studi effettuati dallo scrivente in aree adiacenti e limitrofe;
- c) n°2 prove penetrometriche dinamiche continue tramite l'utilizzo dello strumento di tipo super-pesante (DPSH);

- d) n°1 prova di rumore sismico (HVSR) eseguita con tromografo digitale *"Tromino"* ed elaborazione dati mediante il software *"Grilla"*, forniti entrambe della Società Micromed spa;
- e) n°2 MASW integrate alla prova tromometrica, eseguita mediante tromografo digitale "Tromino" equipaggiato con cavo trigger esterno per acquisizioni multicanale (Tromino Engy);
- f) misurazioni mediante strumenti portatili sugli affioramenti presenti.

INQUADRAMENTO GEOLOGICO E GEOMORFOLOGICO

Il sito in esame è posto circa 0,5 km in direzione N dal centro storico di Rocca di Papa, ad una quota di circa 512 metri s.l.m.. in un'area pianeggiante che con blande pendenze, dell'ordine dei 3-5°, degrada verso nord, in direzione del Fosso del Fosso dell'acqua Marciana.

In relazione alle condizioni topografiche del sito in esame (Tab. 3.2.IV) si definisce la Categoria T1 [superficie pianeggiante, pendii e rilievi isolati con inclinazione media $i \le 15^{\circ}$] corrispondente ad un Coefficiente di Amplificazione Topografica $S_T = 1,00$.

Essa è descritta nel F.150 – "Roma" (III quadrante, tavoletta NE - "Frascati") della cartografia ufficiale topografica e geologica I.G.M e nella sezione 388010 –"Grottaferrata", della Carta Tecnica Regionale (C.T.R.) edita dalla Regione Lazio.

Geologia dell'area

Da un punto di vista geologico il territorio di Rocca di Papa è caratterizzato dalla presenza dei depositi vulcanici del Distretto vulcanico Albano.

Il Distretto vulcanico Albano (Vulcano Laziale Auctt.) è il più meridionale dei distretti vulcanici a struttura centrale del Lazio. Esso si è sviluppato su un substrato sedimentario costituito da unità calcareo-silico-marnose mesozoiche riferibili al Dominio Umbro-Marchigiano-Sabino. Al di sopra di tale successione, giacciono in discordanza depositi neogenici post-orogenici, arenaci e pelitici, con spessori estremamente variabili.

Il Distretto Vulcanico Albano inizia la sua attività nel Pleistocene medio, intorno a 0.6-0.7 milioni di anni da oggi; attività che termina intorno a 20.000 anni fa.

Nella letteratura geologica vengono considerate tre fasi principali nell'evoluzione dell'attività vulcanica, distinte sia cronologicamente che per la tipologia eruttiva ed i volumi di materiali emessi.

I Fase: attività del Tuscolano-Artemisio. Questa prima fase compresa cronologicamente tra circa 600.000 e 360.000 anni fa, è caratterizzata da una attività concentrata in un edificio principale (Tuscolano-Artemisio) è a sua volta suddivisa in quattro cicli principali. Ognuno di questi cicli è caratterizzato da notevole attività esplosiva, con emissione di grandi quantità di depositi piroclastici (colate, di ricaduta) con un'attività prevalentemente effusiva di chiusura. La prima fase termina con il collasso dell'edificio Tuscolano-Artemisio. Durante questa fase vengono eruttati oltre il 90 % dei prodotti emessi dal Distretto Vulcanico Albano.

II Fase: attività dei Campi di Annibale (o delle Faete). Dopo una breve stasi l'attività eruttiva riprende all'interno dell'area collassata con la formazione di uno strato-vulcano. Questa seconda fase è compresa, cronologicamente, tra circa 300.000 e 200.000 anni fa.

III Fase: attività idro-magmatica finale. L'ultima fase di attività del distretto vulcanico è caratterizzata da eruzioni da crateri eccentrici, posti al limite nord-occidentale del distretto, rappresentati dai crateri di: Ariccia, Nemi, Prata Porci, Castiglione, Pantano Secco, Valle Marciana, Albano e Giuturna. Tale fase termina circa 20.000 anni fa.

Dal punto di vista litologico, l'area in esame è caratterizzata, al di sotto di uno spessore metrico di coltre superficiale, dalla presenza di depositi piroclastici il cui grado di addensamento risulta estremamente variabile lateralmente, riferibili cronologicamente al Pleistocene medio [Litosoma Faete] (vedi carta geologica di dettaglio).

Le osservazioni e le indagini compiute hanno evidenziato le discrete condizioni geomorfologiche del sito in questione; non si rinvengono infatti nelle immediate vicinanze dell'area, tracce di fenomeni di dissesto o in genere di processi morfogenetici in atto; le acque di corrivazione non hanno prodotto dissesti o altre forme di erosione diffusa (vedi Carta stralcio PAI).

Da un punto di vista idrogeologico, il sito risente della estrema variabilità laterale e verticale dei depositi piroclastici e lavici.

Le citate vulcaniti hanno nel loro insieme una permeabilità primaria da media a buona, dovuta alla porosità tipica delle sequenze piroclastiche più o meno rimaneggiate. La falda principale, non è stata riscontrata durante l'esecuzione delle indagini, e può essere ritenuta profonda, sebbene non si possa escludere la possibile presenza di modeste falde sospese di tipo superficiale, di portata e continuità generalmente modesta, sostenute da orizzonti impermeabili presenti negli stessi terreni vulcanici.

CARATTERISTICHE DEL TERRENO DI FONDAZIONE

Allo scopo di ricostruire l'andamento stratigrafico del sito e di valutare le caratteristiche geotecniche e sismiche locali del terreno, e, tenendo conto che il sito in esame, in ottemperanza al R.R. n.7 del 16 Aprile 2021 della Regione Lazio (D.G.R. 189/2021)– Allegato C, ricade in "Livello di vulnerabilità Medio", sono state pertanto eseguite le seguenti indagini minime:

- a) un rilevamento geologico e geomorfologico di dettaglio;
- b) acquisizione dati tratti da studi effettuati dallo scrivente in aree adiacenti e limitrofe;
- c) n°2 prove penetrometriche dinamiche continue tramite l'utilizzo dello strumento di tipo super-pesante (DPSH);
- d) n°1 prova di rumore sismico (HVSR) eseguita con tromografo digitale *"Tromino"* ed elaborazione dati mediante il software *"Grilla"*, forniti entrambe della Società Micromed spa;
- e) n°2 MASW integrate alla prova tromometrica, eseguita mediante tromografo digitale "Tromino" equipaggiato con cavo trigger esterno per acquisizioni multicanale (Tromino Engy);
- f) misurazioni mediante strumenti portatili sugli affioramenti presenti.

I dati ottenuti dalle prove penetrometriche dinamiche ubicate all'interno dell'area di intervento (vedi planimetria in allegato) hanno evidenziato, dall'alto verso il basso, una situazione stratigrafica caratterizzata a larga scala da una successione dei terreni pressoché omogenea, con un andamento degli strati che segue in linea di massima la morfologia dell'area, evidenziata nella sezione geologica interpretativa in allegato, caratterizzata dalla presenza di: <u>PROVA DPSH1 (**)</u> CORRELATA CON MISURA HVSR

Dal P.C. a -6.0 m = Riporti e Materiali rimaneggiati da -6.0 m a -8.7m = Depositi piroclastici e pozzolane da poco a MEDIAMENTE ADDENSATI da -8.7m a -30,00 m(**)= Depositi piroclastici semilitoidi

PROVA DPSH2

dal P.C. a -6.0 m = Riporti e Materiali rimaneggiati oltre -6.0 m = Depositi piroclastici da mediamente addensati a addensati

(**) tali profondità sono state estrapolate anche sulla base dei dati provenienti dalle indagini geofisiche

Per quanto riguarda le caratteristiche geotecniche, i valori di Nspt forniti dalle prove penetrometriche effettuate, correlati con teorie di vari autori (come riportato integralmente nell' elaborato delle prove penetrometriche allegati alla relazione), unitamente a misurazioni mediante strumenti portatili e all'acquisizione dati da prove di laboratorio effettuate su analoghi litotipi, hanno permesso di determinare la seguente tabella dei parametri minimi dei litotipi rinvenuti:

LITOTIPI	Peso di volume (t/m ³)	Angolo di attrito φ (°)	Coesione drenata (t/m ²)	NSPT	Modulo Edometrico (Kg/cm ²)	Modulo di taglio G (Kg/cm ²)
RIPORTI E MATERIALI RIMANEGGIATI	1,78	24	0.2	2,97		180,84
DEPOSITI PIROCLASTICI DA POCO A MEDIAMENTE ADDENSATI	1,82	27	0.5	16,17	155,85	889,41

Nel rispetto del § 7.11.3.4.2 delle N.T.C./18, va precisato che si esclude la verifica a liquefazione in quanto la profondità media stagionale della falda è superiore a 15 metri dal piano campagna.

CARATTERIZZAZIONE SISMICA Coordinate WGS84 del sito Lat. 41.771104° - Long. 12.706836°

Il comune di **Rocca di Papa** è stato classificato come località non sismica sulla base delle proposte del Gruppo di Lavoro del Servizio Sismico Nazionale (Ord. P.C.M. n.2788 del 12.06.1998). E' stato poi classificato in **Zona 2** ai sensi dell'Ord. P.C.M. n°3274 del 20.03.2003 e successivamente confermato, in ottemperanza alla Delib. Giunta Reg. Lazio n°766 del 01.08.2003 che aggiorna in senso restrittivo l'Ord. P.C.M. n°3274, in **Zona 2B**, equiparata alla precedente Seconda Categoria Sismica.

ANALISI SISMICA TRAMITE MICROTREMORI

Il rumore sismico è presente in qualsiasi punto della superficie terrestre e consiste per lo più nelle onde prodotte dall'interferenza costruttiva delle onde P ed S negli strati superficiali. Il rumore sismico viene prodotto principalmente dal vento e dalle onde del mare. Anche le industrie e il traffico veicolare producono localmente rumore sismico ma, in genere, solo a frequenze relativamente alte, superiori ad alcuni Hz, che vengono attenuate piuttosto rapidamente.

A tale andamento generale, che è sempre presente, si sovrappongono gli effetti locali, dovuti a sorgenti antropiche e/o naturali.

Il rumore di fondo agisce da funzione di eccitazione per le risonanze specifiche sia degli edifici che del sottosuolo, un po' come una luce bianca che illumina gli oggetti, eccitando le lunghezze d'onda del loro stesso colore. Ad esempio, se ci si trova all'interno di un edificio con frequenze di risonanza a 6 e 100 Hz, il rumore di fondo ecciterà queste frequenze, rendendole chiaramente visibili nello spettro di rumore. Allo stesso modo compariranno anche le frequenze di risonanza del sottosuolo. Ad esempio, se il sottosuolo su cui lo strumento è posto ha una stratificazione con frequenze proprie a 0.8 Hz e 20 Hz, queste frequenze appariranno nello spettro come picchi facilmente individuabili rispetto alla traccia di sottofondo.

Durante un terremoto che si può assimilare ad una traccia di rumore con ampiezze sino a 10¹⁰ volte maggiori del rumore di fondo, se la frequenza di risonanza del suolo e quella dell'edificio che si trova su di esso sono uguali, viene indotta un'oscillazione risonante accoppiata, detta *amplificazione sismica*, che accresce enormemente le sollecitazioni sull'edificio.

L'amplificazione sismica è la prima causa dei danni agli edifici durante un terremoto, molto più della grandezza stessa del terremoto. Un esempio notevole di amplificazione sismica si è avuto in anni recenti, il 19 settembre 1985, quando un terremoto "medio" (M=6.6) colpì il Messico Centrale producendo danni modesti vicino all'epicentro, ma provocando il crollo di 400 palazzi a Città del Messico, distante 240 km dall'epicentro. Analisi successive hanno mostrato come Città del Messico sia costruita su di un bacino sedimentario la cui frequenza, circa 1 Hz, è identica a quella dei palazzi di 10 piani che risultarono essere i più danneggiati dal terremoto. Allo stesso modo, il terremoto calabro-messinese del 28 dicembre 1908 (M=7.2) distrusse il 95% delle case di Messina ma lasciò praticamente intatte tutte quelle costruite su roccia e quindi non soggette a amplificazione sismica.

La tecnica qui applicata e detta HVSR (Horizontal/Vertical Spectral Ratio) con registrazione su singola stazione. Alla curva sperimentale HVSR (rossa, in Fig. 1, riferita ad un caso generico) viene sovrapposta una curva teorica (blu) usando il vincolo geologico-stratigrafico ottenuto per via indipendente dalle indagini di campagna sullo strato più superficiale.

Figura 1

I picchi evidenziati corrispondono ad orizzonti stratigrafici dotati di una particolare frequenza di risonanza (espressa in Hertz) e caratterizzati da differenze di impedenza sismica, direttamente correlabili alla velocità di propagazione delle onde sismiche, tanto più evidenti quanto maggiore è il contrasto di impedenza/velocità.

La procedura dunque comprende:

- a) Identificazione diretta di uno strato superficiale (posto solitamente entro i primi metri dal p.c.);
- b) Identificazione del picco ad esso riferito sulla curva sperimentale;
- c) Costruzione del *best fit* della curva teorica su quella sperimentale, usando i vincoli dei punti precedenti (Figura 2);

Figura 2

 a) Costruzione di una sequenza sismica monodimensionale fondata sulle Vs, i cui orizzonti stratigrafici corrispondono ai picchi della sovrapposizione curva sperimentale vs. curva teorica, come nella figura che segue (Figura 3), anch'essa riferita ad un caso generico.

Figura 3

L'acquisizione dei dati di campagna viene effettuata mediante tromografo digitale *Tromino* della Micromed spa, mentre l'elaborazione dei dati si serve del software Grilla fornito dalla stessa ditta.

Nei grafici in allegato sono inoltre rappresentati:

a) Diagramma rappresentativo della stabilità del rapporto H/V, durante la registrazione, indice della pulizia della traccia acquisita (Figura 4);

Figura 4

b) Diagramma delle singole componenti spettrali, misurate dal tromografo (Figura 5).

Pertanto, sulla base dei dati pervenuti e dall'acquisizione dei dati stratigrafici tratti da altre indagini geognostiche (prove penetrometriche dinamiche) effettuate in siti limitrofi ottenendo valori delle velocità di V_{s30} di 237 m/s (HVSR), di 237 m/s (MASW1) e di 239 m/s (MASW2).

Ai sensi del D.M. 17.01.2018 ("Norme Tecniche per le Costruzioni", Tab. 3.2.II), per la progettazione di manufatti soggetti ad azioni sismiche, il terreno in esame può essere riferito alla Categoria di Suolo di Fondazione C – Depositi di terreni a grana grossa mediamente addensati o terreni a grana fine mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalenti compresi tra 180 m/s e 360 m/s.

PARAMETRI DI PERICOLOSITÀ SISMICA

Nell'ipotesi, da verificare in fase progettuale, di un edificio ricadente in **Classe III** (par. 2.4.2 NTC) e di una **vita nominale pari a 50 anni e un periodo di riferimento pari a 50 anni**, si definiscono i seguenti parametri di pericolosità sismica ai sensi della normativa vigente:

STATO LIMITE	Tr (anni)	Probabilità superamento	a ₀ (g)	Fo	T _c * (sec)	
Operatività (SLO)	30	81%	0.071	2.379	0.265	
Danno (SLD)	50	63%	0.088	2.429	0.268	
Salvaguardia Vita (SLV)	475	10%	0.191	2.558	0.281	
Prevenzione Collasso ((SLC)	975	5%	0.236	2.520	0.289	

ALTRI PARAMETRI	SLO	SLD	SLV	SLC
Amplificazione Stratigrafica Ss	1.50	1.50	1.41	1.34
Coeff. Funzione Categoria Cc	1.63	1.62	1.60	1.58
Amplificazione Topografica St	1.00	1.00	1.00	1.00
Coefficiente Kh	0.021	0.026	0.065	0.088
Coefficiente Kv	0.0011	0.013	0.032	0.044
Accelerazione massima attesa nel sito Amax (m/s ²)	1.038	1.298	2.637	3.098
Coefficiente β	0.200	0.200	0.240	0.280

CONCLUSIONI

L'area interessata dal progetto è ricadente in zona già nota e, considerando le caratteristiche morfologiche e geolitologiche del terreno descritto, in via preliminare, non si ravvisano difficoltà di ordine geologico alla realizzazione di quanto in progetto, a patto che:

- ✤ si attui un'adeguata regimazione delle acque superficiali;
- le fondazioni del fabbricato siano impostate al di sotto dei terreni rimaneggiati;

 vengano eseguiti ulteriori indagini e studi così come previsto da normativa vigente in fase di progettazione esecutiva (D.G.R. 189/2021).

Poggio Mirteto, Maggio 2021 Dr. Geol. David Simoncelli

Corografia

Scala 1:10.000

Corografia

Scala 1:10.000

Ubicazione del sito

Depositi piroclastici (pozzolane) da poco a mediamente addensati attribuibili al Litosoma Faete (Pleistocene Medio)

Stralcio Carta Piano Assetto Idrogeologico Scala 1:5.000

Legenda		feromeno fenomeno fenomeno
Inventario dei fenom	eni franosi	area a calanchi o in erosione
fenomeno fenomeno fenomeno feno attivo quiescente inattivo* pres	meno unto	frana presunta
	frana per crollo o ribaltamento	orio di scarpata di frana
	frana per scivolamento	frana non cartografabile
<u>50</u> 50 50 50	frana per colamento	
XX XX XX X	🔀 frana complessa	
	area con franosità diffusa area interessata da deformazioni gravitative profonde (DGPV) area interessata da deformazioni superficiali lente e/o soliflusso falda e/o cono di detrito debris flow (colata di detrito)	Situazioni di rischio da frana R4 - 'molto elevato' R3 - 'elevato'

Ubicazione del sito

Stralcio Carta MOPS Scala 1:10.000

ZONE STABILI SUSCETTIBILI DI AMPLIFICAZIONI LOCALI

Riporto antropico (matrice limoso-sabbiosa, spessore stimato in decine di metri)

Deposito lacustre a granulometria mista o indistinta

Deposito piroclastico con alterazione superiore a 20.0 m

Zona SI

Deposito piroclastico

ZONE SUSCETTIBILI DI INSTABILITA'

Coltre di frana (granulometria sabbioso-limosa con clasti polimetrici, spessore variabile da 1m a 20m

AREE ESENTATE DAGLI STUDI DI MS

Planimetria ubicativa

Legenda

- Prova di rumore sismico HVSR
- Prova penetrometrica super pesante (DPSH)

Indagine geofisica MASW

Documentazione fotografica

DPSH

MASW

HVSR

GEOSTRU CHANGES FROM: PREFERENCES OPTIONS COMPANY

PROVA PENETROMETRICA DINAMICA Nr.1 Strumento utilizzato... DPSH GEDIS

Committente: Descrizione: Viale Europa Località: Rocca di Papa (RM)

GEOSTRU CHANGES FROM: PREFERENCES OPTIONS COMPANY

.....

PROVA PENETROMETRICA DINAMICA Nr.2 Strumento utilizzato... DPSH GEDIS

Committente: Descrizione: Viale Europa Località: Rocca di Papa (RM)

PROVA PENETROMETRICA DINAMICA

Descrizione: Viale Europa Località: Rocca di Papa (RM)	
---	--

Caratteristiche Tecniche-Strumentali Sonda: DPSH GEDIS

Rif. Norme D	IN 4094
Peso Massa battente	73 Kg
Altezza di caduta libera	0.75 m
Peso sistema di battuta	25 Kg
Diametro punta conica	50.46 mm
Area di base punta	20 cm ²
Lunghezza delle aste	0.9 m
Peso aste a metro	6.3 Kg/m
Profondità giunzione prima asta	a 0.90 m
Avanzamento punta	0.30 m
Numero colpi per punta	N(30)
Coeff. Correlazione	1.797
Rivestimento/fanghi	No
Angolo di apertura punta	60 °

PROVE PENETROMETRICHE DINAMICHE CONTINUE (DYNAMIC PROBING) DPSH – DPM (... scpt ecc.)

Note illustrative - Diverse tipologie di penetrometri dinamici

La prova penetrometrica dinamica consiste nell'infiggere nel terreno una punta conica (per tratti consecutivi δ) misurando il numero di colpi N necessari.

Le Prove Penetrometriche Dinamiche sono molto diffuse ed utilizzate nel territorio da geologi e geotecnici, data la loro semplicità esecutiva, economicità e rapidità di esecuzione.

La loro elaborazione, interpretazione e visualizzazione grafica consente di "catalogare e parametrizzare" il suolo attraversato con un'immagine in continuo, che permette anche di avere un raffronto sulle consistenze dei vari livelli attraversati e una correlazione diretta con sondaggi geognostici per la caratterizzazione stratigrafica.

La sonda penetrometrica permette inoltre di riconoscere abbastanza precisamente lo spessore delle coltri sul substrato, la quota di eventuali falde e superfici di rottura sui pendii, e la consistenza in generale del terreno.

L'utilizzo dei dati, ricavati da correlazioni indirette e facendo riferimento a vari autori, dovrà comunque essere trattato con le opportune cautele e, possibilmente, dopo esperienze geologiche acquisite in zona. Elementi caratteristici del penetrometro dinamico sono i seguenti:

- peso massa battente M;
- altezza libera caduta H;
- punta conica: diametro base cono D, area base A (angolo di apertura α);
- avanzamento (penetrazione) δ ;
- presenza o meno del rivestimento esterno (fanghi bentonitici).

Con riferimento alla classificazione ISSMFE (1988) dei diversi tipi di penetrometri dinamici (vedi tabella sotto riportata) si rileva una prima suddivisione in quattro classi (in base al peso M della massa battente) :

- tipo LEGGERO (DPL);
- tipo MEDIO (DPM);
- tipo PESANTE (DPH);
- tipo SUPERPESANTE (DPSH).

Classificazione ISSMFE dei penetrometri dinamici:

Тіро	Sigla di riferimento	peso della massa M	prof. max indagine	
		(<i>kg</i>)	battente	
			(<i>m</i>)	
Leggero	DPL (Light)	M ≤ 10	8	
Medio	DPM (Medium)	10 < M < 40	20-25	
Pesante	DPH (Heavy)	$40 \le M \le 60$	25	
Super pesante (Super Heavy)	DPSH	M ≥ 60	25	

penetrometri in uso in Italia

In Italia risultano attualmente in uso i seguenti tipi di penetrometri dinamici (non rientranti però nello Standard ISSMFE):

- DINAMICO LEGGERO ITALIANO (DL-30) (MEDIO secondo la classifica ISSMFE) massa battente M = 30 kg, altezza di caduta H = 0.20 m, avanzamento δ = 10 cm, punta conica (α =60-90°), diametro D 35.7 mm, area base cono A=10 cm² rivestimento / fango bentonitico : talora previsto;

```
- DINAMICO LEGGERO ITALIANO (DL-20) (MEDIO secondo la classifica ISSMFE)
massa battente M = 20 kg, altezza di caduta H=0.20 m, avanzamento \delta = 10 cm, punta conica
(\alpha= 60-90°), diametro D 35.7 mm, area base cono A=10 cm<sup>2</sup> rivestimento / fango bentonitico : talora
previsto;
```

- DINAMICO PESANTE ITALIANO (SUPERPESANTE secondo la classifica ISSMFE) massa battente M = 73 kg, altezza di caduta H=0.75 m, avanzamento δ =30 cm, punta conica $(\alpha = 60^{\circ})$, diametro D = 50.8 mm, area base cono A=20.27 cm² rivestimento: previsto secondo precise indicazioni;

- DINAMICO SUPERPESANTE (Tipo EMILIA)

massa battente M=63.5 kg, altezza caduta H=0.75 m, avanzamento δ =20-30 cm, punta conica conica (α = 60°-90°) diametro D = 50.5 mm, area base cono A = 20 cm², rivestimento / fango bentonitico : talora previsto.

Correlazione con Nspt

Poiché la prova penetrometrica standard (SPT) rappresenta, ad oggi, uno dei mezzi più diffusi ed economici per ricavare informazioni dal sottosuolo, la maggior parte delle correlazioni esistenti riguardano i valori del numero di colpi Nspt ottenuto con la suddetta prova, pertanto si presenta la necessità di rapportare il numero di colpi di una prova dinamica con Nspt. Il passaggio viene dato da:

$$NSPT = \beta_t \cdot N$$

Dove:

$$\beta_t = \frac{Q}{Q_{SPT}}$$

in cui Q è l'energia specifica per colpo e Qspt è quella riferita alla prova SPT.

L'energia specifica per colpo viene calcolata come segue:

$$Q = \frac{M^2 \cdot H}{A \cdot \delta \cdot (M + M')}$$

in cui

M peso massa battente.

M' peso aste.

H altezza di caduta.

A area base punta conica.

 δ passo di avanzamento.

Valutazione resistenza dinamica alla punta Rpd

Formula Olandesi

$$Rpd = \frac{M^2 \cdot H}{\left[A \cdot e \cdot (M+P)\right]} = \frac{M^2 \cdot H \cdot N}{\left[A \cdot \delta \cdot (M+P)\right]}$$

Rpd	resistenza	dinamica	punta	(area	A).
-----	------------	----------	-------	-------	-----

e infissione media per colpo (δ / N).

M peso massa battente (altezza caduta H).

P peso totale aste e sistema battuta.

Calcolo di (N 1)60

 $(N_1)_{60}$ è il numero di colpi normalizzato definito come segue:

 $(N_1)_{60} = \text{CN} \cdot \text{N60 con CN} = \sqrt{(\text{Pa}' \sigma_{vo})}$ CN < 1.7 Pa = 101.32kPa(*Liao e Whitman 1986*)

 $N_{60} = N_{SPT} \cdot (ER/60) \cdot C_{S} \cdot C_{r} \cdot C_{d}$

ER/60	rendimento del sistema di infissione normalizzato al 60%.
Cs	parametro funzione della controcamicia (1.2 se assente).
Cd	funzione del diametro del foro (1 se compreso tra 65-115mm).
Cr	parametro di correzione funzione della lunghezza delle aste.

Metodologia di Elaborazione.

Le elaborazioni sono state effettuate mediante un programma di calcolo automatico Dynamic Probing della *GeoStru Software*.

Il programma calcola il rapporto delle energie trasmesse (coefficiente di correlazione con SPT) tramite le elaborazioni proposte da Pasqualini (1983) - Meyerhof (1956) - Desai (1968) - Borowczyk-Frankowsky (1981). Permette inoltre di utilizzare i dati ottenuti dall'effettuazione di prove penetrometriche per estrapolare utili informazioni geotecniche e geologiche.

Una vasta esperienza acquisita, unitamente ad una buona interpretazione e correlazione, permettono spesso di ottenere dati utili alla progettazione e frequentemente dati maggiormente attendibili di tanti dati bibliografici sulle litologie e di dati geotecnici determinati sulle verticali litologiche da poche prove di laboratorio eseguite come rappresentazione generale di una verticale eterogenea disuniforme e/o complessa.

In particolare consente di ottenere informazioni su:

- l'andamento verticale e orizzontale degli intervalli stratigrafici,
- la caratterizzazione litologica delle unità stratigrafiche,
- i parametri geotecnici suggeriti da vari autori in funzione dei valori del numero dei colpi e delle resistenza alla punta.

Valutazioni statistiche e correlazioni

Elaborazione Statistica

Permette l'elaborazione statistica dei dati numerici di Dynamic Probing, utilizzando nel calcolo dei valori rappresentativi dello strato considerato un valore inferiore o maggiore della media aritmetica dello strato (dato comunque maggiormente utilizzato); i valori possibili in immissione sono :

Media

Media aritmetica dei valori del numero di colpi sullo strato considerato.

Media minima

Valore statistico inferiore alla media aritmetica dei valori del numero di colpi sullo strato considerato.

Massimo

Valore massimo dei valori del numero di colpi sullo strato considerato.

Minimo

Valore minimo dei valori del numero di colpi sullo strato considerato.

Scarto quadratico medio

Valore statistico di scarto dei valori del numero di colpi sullo strato considerato.

Media deviata

Valore statistico di media deviata dei valori del numero di colpi sullo strato considerato.

Media (+ s)

Media + scarto (valore statistico) dei valori del numero di colpi sullo strato considerato.

Media (- s)

Media - scarto (valore statistico) dei valori del numero di colpi sullo strato considerato.

Distribuzione normale R.C.

Il valore di $N_{spt,k}$ viene calcolato sulla base di una distribuzione normale o gaussiana, fissata una probabilità di non superamento del 5%, secondo la seguente relazione:

$$Nspt_{,k} = Nspt_{,medio} - 1.645 \cdot (\sigma_{Nspt})$$

dove σ_{Nspt} è la deviazione standard di Nspt

Distribuzione normale R.N.C.

Il valore di Nspt,k viene calcolato sulla base di una distribuzione normale o gaussiana, fissata una probabilità di non superamento del 5%, trattando i valori medi di Nspt distribuiti normalmente:

$$Nspt_{k} = Nspt_{medio} - 1.645 \cdot (\sigma_{Nspt}) / \sqrt{n}$$

dove n è il numero di letture.

Pressione ammissibile

Pressione ammissibile specifica sull'interstrato (con effetto di riduzione energia per svergolamento aste o no) calcolata secondo le note elaborazioni proposte da Herminier, applicando un coefficiente di sicurezza (generalmente = 20-22) che corrisponde ad un coefficiente di sicurezza standard delle fondazioni pari a 4, con una geometria fondale standard di larghezza pari a 1 m ed immorsamento d = 1 m.

Correlazioni geotecniche terreni incoerenti

Liquefazione

Permette di calcolare utilizzando dati Nspt il potenziale di liquefazione dei suoli (prevalentemente sabbiosi).

Attraverso la relazione di *SHI-MING (1982)*, applicabile a terreni sabbiosi, la liquefazione risulta possibile solamente se Nspt dello strato considerato risulta inferiore a Nspt critico calcolato con l'elaborazione di *SHI-MING*.

Correzione Nspt in presenza di falda

Nspt corretto $= 15 + 0.5 \cdot (Nspt - 15)$

Nspt è il valore medio nello strato

La correzione viene applicata in presenza di falda solo se il numero di colpi è maggiore di 15 (la correzione viene eseguita se tutto lo strato è in falda).

Angolo di Attrito

- Peck-Hanson-Thornburn-Meyerhof (1956) Correlazione valida per terreni non molli a prof. < 5 m; correlazione valida per sabbie e ghiaie rappresenta valori medi. Correlazione storica molto usata, valevole per prof. < 5 m per terreni sopra falda e < 8 m per terreni in falda (tensioni < 8-10 t/mq)
- Meyerhof (1956) Correlazioni valide per terreni argillosi ed argillosi-marnosi fessurati, terreni di riporto sciolti e coltri detritiche (da modifica sperimentale di dati).
- Sowers (1961)- Angolo di attrito in gradi valido per sabbie in genere (cond. ottimali per prof. < 4 m. sopra falda e < 7 m per terreni in falda) σ >5 t/mq.
- De Mello Correlazione valida per terreni prevalentemente sabbiosi e sabbioso-ghiaiosi (da modifica sperimentale di dati) con angolo di attrito < 38°.
- Malcev (1964) Angolo di attrito in gradi valido per sabbie in genere (cond. ottimali per prof. > 2 m e per valori di angolo di attrito < 38°).
- Schmertmann (1977)- Angolo di attrito (gradi) per vari tipi litologici (valori massimi). N.B. valori spesso troppo ottimistici poiché desunti da correlazioni indirette da Dr %.
- Shioi-Fukuni (1982) ROAD BRIDGE SPECIFICATION, Angolo di attrito in gradi valido per sabbie sabbie fini o limose e limi siltosi (cond. ottimali per prof. di prova > 8 m sopra falda e > 15 m per terreni in falda) σ >15 t/mq.
- Shioi-Fukuni (1982) JAPANESE NATIONALE RAILWAY, Angolo di attrito valido per sabbie medie e grossolane fino a ghiaiose.
- Angolo di attrito in gradi (Owasaki & Iwasaki) valido per sabbie sabbie medie e grossolane-ghiaiose (cond. ottimali per prof. > 8 m sopra falda e > 15 m per terreni in falda) s>15 t/mq.
- Meyerhof (1965) Correlazione valida per terreni per sabbie con % di limo < 5% a profondità < 5 m e con (%) di limo > 5% a profondità < 3 m.
- Mitchell e Katti (1965) Correlazione valida per sabbie e ghiaie.

Densità relativa (%)

- Gibbs & Holtz (1957) correlazione valida per qualunque pressione efficace, per ghiaie Dr viene sovrastimato, per limi sottostimato.
- Skempton (1986) elaborazione valida per limi e sabbie e sabbie da fini a grossolane NC a qualunque pressione efficace, per ghiaie il valore di Dr % viene sovrastimato, per limi sottostimato.
- Meyerhof (1957).
- Schultze & Menzenbach (1961) per sabbie fini e ghiaiose NC, metodo valido per qualunque valore di pressione efficace in depositi NC, per ghiaie il valore di Dr % viene sovrastimato, per limi sottostimato.

Modulo Di Young (E_v)

- Terzaghi elaborazione valida per sabbia pulita e sabbia con ghiaia senza considerare la pressione efficace.
- Schmertmann (1978), correlazione valida per vari tipi litologici .
- Schultze-Menzenbach, correlazione valida per vari tipi litologici.
- D'Appollonia ed altri (1970), correlazione valida per sabbia, sabbia SC, sabbia NC e ghiaia.
- Bowles (1982), correlazione valida per sabbia argillosa, sabbia limosa, limo sabbioso, sabbia media, sabbia e ghiaia.

Modulo Edometrico

Begemann (1974) elaborazione desunta da esperienze in Grecia, correlazione valida per limo con sabbia, sabbia e ghiaia

- Buismann-Sanglerat, correlazione valida per sabbia e sabbia argillosa.
- Farrent (1963) valida per sabbie, talora anche per sabbie con ghiaia (da modifica sperimentale di dati).
- Menzenbach e Malcev valida per sabbia fine, sabbia ghiaiosa e sabbia e ghiaia.

Stato di consistenza

• Classificazione A.G.I. 1977

Peso di Volume

• Meyerhof ed altri, valida per sabbie, ghiaie, limo, limo sabbioso.

Peso di volume saturo

• Terzaghi-Peck (1948-1967)

Modulo di poisson

• Classificazione A.G.I.

Potenziale di liquefazione (Stress Ratio)

• Seed-Idriss (1978-1981) . Tale correlazione è valida solamente per sabbie, ghiaie e limi sabbiosi, rappresenta il rapporto tra lo sforzo dinamico medio τ e la tensione verticale di consolidazione per la valutazione del potenziale di liquefazione delle sabbie e terreni sabbio-ghiaiosi attraverso grafici degli autori.

Velocità onde di taglio Vs (m/s)

• Tale correlazione è valida solamente per terreni incoerenti sabbiosi e ghiaiosi.

Modulo di deformazione di taglio (G)

- Ohsaki & Iwasaki elaborazione valida per sabbie con fine plastico e sabbie pulite.
- Robertson e Campanella (1983) e Imai & Tonouchi (1982) elaborazione valida soprattutto per sabbie e per tensioni litostatiche comprese tra 0,5 4,0 kg/cmq.

Modulo di reazione (Ko)

• Navfac (1971-1982) - elaborazione valida per sabbie, ghiaie, limo, limo sabbioso.

Resistenza alla punta del Penetrometro Statico (Qc)

• Robertson (1983) - Qc

Correlazioni geotecniche terreni coesivi

Coesione non drenata

- Benassi & Vannelli- correlazioni scaturite da esperienze ditta costruttrice Penetrometri SUNDA (1983).
- Terzaghi-Peck (1948-1967), correlazione valida per argille sabbiose-siltose NC con Nspt < 8, argille limose-siltose mediamente plastiche, argille marnose alterate-fessurate.
- Terzaghi-Peck (1948). Cu (min-max).
- Sanglerat, da dati Penetr. Statico per terreni coesivi saturi, tale correlazione non è valida per argille sensitive con sensitività > 5, per argille sovraconsolidate fessurate e per i limi a bassa plasticità.
- Sanglerat, (per argille limose-sabbiose poco coerenti), valori validi per resistenze penetrometriche
 < 10 colpi, per resistenze penetrometriche > 10 l'elaborazione valida è comunque quella delle "argille plastiche " di Sanglerat.
- (U.S.D.M.S.M.) U.S. Design Manual Soil Mechanics Coesione non drenata per argille limose e argille di bassa media ed alta plasticità , (Cu-Nspt-grado di plasticità).
- Schmertmann (1975), Cu (Kg/cmq) (valori medi), valida per **argille** e **limi argillosi** con Nc = 20 e Qc/Nspt = 2.
- Schmertmann (1975), Cu (Kg/cmq) (valori minimi), valida per argille NC.

- Fletcher (1965), (Argilla di Chicago). Coesione non drenata Cu (Kg/cmq), colonna valori validi per argille a medio-bassa plasticità.
- Houston (1960) argilla di media-alta plasticità.
- Shioi-Fukuni (1982), valida per suoli poco coerenti e plastici, argilla di media-alta plasticità.
- Begemann.
- De Beer.

Resistenza alla punta del Penetrometro Statico (Qc)

• Robertson (1983) - Qc

Modulo Edometrico-Confinato (Mo)

- Stroud e Butler (1975),- per litotipi a media plasticità, valida per litotipi argillosi a media-medio-alta plasticità da esperienze su argille glaciali.
- Stroud e Butler (1975), per litotipi a medio-bassa plasticità (IP < 20), valida per litotipi argillosi a medio-bassa plasticità (IP < 20) da esperienze su argille glaciali .
- Vesic (1970), correlazione valida per argille molli (valori minimi e massimi).
- Trofimenkov (1974), Mitchell e Gardner Modulo Confinato -Mo (Eed) (Kg/cmq)-, valida per litotipi argillosi e limosi-argillosi (rapporto Qc/Nspt=1.5-2.0).
- Buismann- Sanglerat, valida per argille compatte (Nspt < 30) medie e molli (Nspt < 4) e argille sabbiose (Nspt = 6-12).

Modulo Di Young (E_Y)

- Schultze-Menzenbach (Min. e Max.), correlazione valida per limi coerenti e limi argillosi con I.P. > 15.
- D'Appollonia ed altri (1983), correlazione valida per argille sature-argille fessurate.

Stato di consistenza

• Classificazione A.G.I. 1977.

Peso di Volume

• Meyerhof ed altri, valida per argille, argille sabbiose e limose prevalentemente coerenti.

Peso di volume saturo

• Meyerhof ed altri.

PROVA ... Nr.1

Strumento utilizzato	DPSH GEDIS
Prova eseguita in data	11-05-2021
Profondità prova	8.70 mt
Falda non rilevata	

Tipo elaborazione Nr. Colpi: Medio

Profondità	Nr. Colpi	Calcolo	Res.	Res.	Pres.	Pres.
(m)		coeff.	dinamica	dinamica	ammissibile	ammissibile
		riduzione	ridotta	(Kg/cm ²)	con riduzione	Herminier -
		sonda Chi	(Kg/cm ²)		Herminier -	Olandesi
					Olandesi	(Kg/cm ²)
					(Kg/cm ²)	
0.30	0	0.853	0.00	0.00	0.00	0.00
0.60	2	0.847	10.82	12.77	1.08	1.28
0.90	5	0.842	26.87	31.93	2.69	3.19
1.20	3	0.836	15.11	18.07	1.51	1.81
1.50	2	0.831	10.01	12.05	1.00	1.20
1.80	4	0.826	19.91	24.09	1.99	2.41
2.10	2	0.822	9.36	11.40	0.94	1.14
2.40	1	0.817	4.66	5.70	0.47	0.57
2.70	1	0.813	4.39	5.41	0.44	0.54
3.00	0	0.809	0.00	0.00	0.00	0.00
3.30	0	0.805	0.00	0.00	0.00	0.00
3.60	1	0.801	4.33	5.41	0.43	0.54
3.90	1	0.797	4.10	5.14	0.41	0.51
4.20	1	0.794	4.08	5.14	0.41	0.51
4.50	1	0.790	4.07	5.14	0.41	0.51
4.80	0	0.787	0.00	0.00	0.00	0.00
5.10	3	0.784	11.54	14.72	1.15	1.47
5.40	4	0.781	14.65	18.75	1.46	1.88
5.70	2	0.778	7.30	9.38	0.73	0.94
6.00	0	0.775	0.00	0.00	0.00	0.00
6.30	10	0.773	34.69	44.89	3.47	4.49
6.60	10	0.770	34.58	44.89	3.46	4.49
6.90	13	0.718	41.89	58.35	4.19	5.84
7.20	12	0.766	41.24	53.86	4.12	5.39
7.50	15	0.713	46.08	64.59	4.61	6.46
7.80	5	0.761	16.39	21.53	1.64	2.15
8.10	5	0.759	15.71	20.69	1.57	2.07
8.40	6	0.757	18.80	24.82	1.88	2.48
8.70	5	0.755	15.63	20.69	1.56	2.07

Prof.	NPDM	Rd	Tipo	Clay	Peso	Peso	Tension	Coeff.	NSPT	Descrizi
Strato		(Kg/cm ²		Fraction	unità di	unità di	e	di		one
(m))		(%)	volume	volume	efficace	correlaz		
					(t/m³)	saturo	(Kg/cm ²	. con		
						(t/m³))	Nspt		
6	1.65	9.25	Incoere	0	0.0	0.0	0.0	1.8	2.97	RIPOR
			nte							TI E
										MATE
										RIALI
										RIMAN
										EGGIA
										TI
8.7	9	39.37	Incoere	0	0.0	0.0	0.0	1.8	16.17	DEPOS
			nte							ITI
										PIROC
										LASTI
										CI E
										POZZO
										LANE
										DA
										POCO
										A
										MEDIA
										MENTE
										ADDE
										NSATI

STIMA PARAMETRI GEOTECNICI PROVA Nr.1

TERRENI INCOERENTI

Densità re	lativa
Dunsita it	iativa

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Densità relativa
		(m)			(%)
Strato (1)	2.97	0.00-6.00	2.97	Meyerhof 1957	43.26
RIPORTI E					
MATERIALI					
RIMANEGGIA					
TI					
Strato (2)	16.17	6.00-8.70	16.17	Meyerhof 1957	100
DEPOSITI				-	
PIROCLASTIC					
ΙE					
POZZOLANE					
DA POCO A					
MEDIAMENT					
E ADDENSATI					

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Angolo d'attrito
		(m)			(°)
Strato (1)	2.97	0.00-6.00	2.97	Shioi-Fukuni	21.67
RIPORTI E				1982 (ROAD	
MATERIALI				BRIDGE	
RIMANEGGIA				SPECIFICATI	
TI				ON)	
Strato (2)	16.17	6.00-8.70	16.17	Shioi-Fukuni	30.57
DEPOSITI				1982 (ROAD	
PIROCLASTIC				BRIDGE	
IE				SPECIFICATI	
POZZOLANE				ON)	
DA POCO A					
MEDIAMENT					
E ADDENSATI					
Modulo di Young					
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Modulo di
		(m)			Young
					(Kg/cm ²)
Strato (1)	2.97	0.00-6.00	2.97	Bowles (1982)	
RIPORTI E				Sabbia Media	
MATERIALI					
RIMANEGGIA					
TI					
Strato (2)	16.17	6.00-8.70	16.17	Bowles (1982)	155.85
DEPOSITI				Sabbia Media	
PIROCLASTIC					
ΙE					
POZZOLANE					
DA POCO A					
MEDIAMENT					
E ADDENSATI					
Modulo Edometric	со	1	1		

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Modulo
		(m)			Edometrico
					(Kg/cm ²)
Strato (1)	2.97	0.00-6.00	2.97	Begemann 1974	33.56
RIPORTI E				(Ghiaia con	
MATERIALI				sabbia)	
RIMANEGGIA					
TI					
Strato (2)	16.17	6.00-8.70	16.17	Begemann 1974	60.68
DEPOSITI				(Ghiaia con	
PIROCLASTICI				sabbia)	
E POZZOLANE				,	
DA POCO A					
MEDIAMENTE					
ADDENSATI					

Classificazione A	Classificazione AGI						
Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Classificazione AGI		
Strato (1) RIPORTI E MATERIALI RIMANEGGIA TI	2.97	0.00-6.00	2.97	Classificazione A.G.I	SCIOLTO		
Strato (2) DEPOSITI PIROCLASTIC I E POZZOLANE DA POCO A MEDIAMENT E ADDENSATI	16.17	6.00-8.70	16.17	Classificazione A.G.I	MODERATAM ENTE ADDENSATO		
Peso unità di vol	ume						
Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Peso Unità di Volume (t/m ³)		
Strato (1) RIPORTI E MATERIALI RIMANEGGIA TI	2.97	0.00-6.00	2.97	Terzaghi-Peck 1948	1.38		
Strato (2) DEPOSITI PIROCLASTIC I E POZZOLANE DA POCO A MEDIAMENT E ADDENSATI	16.17	6.00-8.70	16.17	Terzaghi-Peck 1948	1.55		
Peso unità di vol	ume saturo						
Descrizione	NSPT	Prof Strato	N Calcolo	Correlazione	Peso Unità		

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Peso Unità
		(m)			Volume Saturo
					(t/m³)
Strato (1)	2.97	0.00-6.00	2.97	Terzaghi-Peck	1.86
RIPORTI E				1948	
MATERIALI					
RIMANEGGIA					
TI					
Strato (2)	16.17	6.00-8.70	16.17	Terzaghi-Peck	1.97
DEPOSITI				1948	
PIROCLASTICI					
E POZZOLANE					
DA POCO A					
MEDIAMENTE					
ADDENSATI					

Modulo di Poisson

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Poisson
		(m)			
Strato (1)	2.97	0.00-6.00	2.97	(A.G.I.)	0.35
RIPORTI E					
MATERIALI					
RIMANEGGIA					
TI					
Strato (2)	16.17	6.00-8.70	16.17	(A.G.I.)	0.32
DEPOSITI					
PIROCLASTIC					
IE					
POZZOLANE					
DA POCO A					
MEDIAMENT					
E ADDENSATI					

Modulo di deformazione a taglio dinamico

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	G
		(m)			(Kg/cm ²)
Strato (1)	2.97	0.00-6.00	2.97	Ohsaki (Sabbie	180.84
RIPORTI E				pulite)	
MATERIALI					
RIMANEGGIA					
TI					
Strato (2)	16.17	6.00-8.70	16.17	Ohsaki (Sabbie	889.41
DEPOSITI				pulite)	
PIROCLASTIC					
IE					
POZZOLANE					
DA POCO A					
MEDIAMENT					
E ADDENSATI					

Qc (Resistenza punta Penetrometro Statico)

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Qc
		(m)			(Kg/cm ²)
Strato (1)	2.97	0.00-6.00	2.97	Robertson 1983	5.94
RIPORTI E					
MATERIALI					
RIMANEGGIA					
TI					
Strato (2)	16.17	6.00-8.70	16.17	Robertson 1983	32.34
DEPOSITI					
PIROCLASTIC					
IE					
POZZOLANE					
DA POCO A					
MEDIAMENT					
E ADDENSATI					

Strumento utilizzato	DPSH GEDIS
Prova eseguita in data	11-05-2021
Profondità prova	8.70 mt
Falda non rilevata	

Tipo elaborazione Nr. Colpi: Medio

Profondità	Nr. Colpi	Calcolo	Res.	Res.	Pres.	Pres.
(m)		coeff.	dinamica	dinamica	ammissibile	ammissibile
		riduzione	ridotta	(Kg/cm ²)	con riduzione	Herminier -
		sonda Chi	(Kg/cm ²)		Herminier -	Olandesi
					Olandesi	(Kg/cm ²)
					(Kg/cm ²)	
0.30	1	0.853	5.45	6.39	0.54	0.64
0.60	2	0.847	10.82	12.77	1.08	1.28
0.90	4	0.842	21.50	25.55	2.15	2.55
1.20	2	0.836	10.07	12.05	1.01	1.20
1.50	2	0.831	10.01	12.05	1.00	1.20
1.80	5	0.826	24.88	30.11	2.49	3.01
2.10	3	0.822	14.05	17.09	1.40	1.71
2.40	2	0.817	9.31	11.40	0.93	1.14
2.70	1	0.813	4.39	5.41	0.44	0.54
3.00	0	0.809	0.00	0.00	0.00	0.00
3.30	1	0.805	4.35	5.41	0.44	0.54
3.60	1	0.801	4.33	5.41	0.43	0.54
3.90	0	0.797	0.00	0.00	0.00	0.00
4.20	1	0.794	4.08	5.14	0.41	0.51
4.50	0	0.790	0.00	0.00	0.00	0.00
4.80	3	0.787	11.58	14.72	1.16	1.47
5.10	2	0.784	7.69	9.81	0.77	0.98
5.40	2	0.781	7.32	9.38	0.73	0.94
5.70	1	0.778	3.65	4.69	0.36	0.47
6.00	4	0.775	14.54	18.75	1.45	1.88
6.30	10	0.773	34.69	44.89	3.47	4.49
6.60	13	0.720	42.04	58.35	4.20	5.84
6.90	14	0.718	45.12	62.84	4.51	6.28
7.20	15	0.716	48.18	67.33	4.82	6.73
7.50	11	0.763	36.16	47.37	3.62	4.74
7.80	7	0.761	22.95	30.14	2.29	3.01
8.10	6	0.759	18.85	24.82	1.88	2.48
8.40	6	0.757	18.80	24.82	1.88	2.48
8.70	5	0.755	15.63	20.69	1.56	2.07

Prof.	NPDM	Rd	Tipo	Clay	Peso	Peso	Tension	Coeff.	NSPT	Descrizi
Strato		(Kg/cm ²		Fraction	unità di	unità di	e	di		one

(m))		(%)	volume	volume	efficace	correlaz		
					(t/m³)	saturo	(Kg/cm ²	. con		
						(t/m³))	Nspt		
6	1.85	10.31	Incoere	0	0.0	0.0	0.0	1.8	3.32	RIPOR
			nte							TI E
										MATE
										RIALI
										RIMAN
										EGGIA
										TI
8.7	9.67	42.36	Incoere	0	0.0	0.0	0.0	1.8	17.38	DEPOS
			nte							ITI
										PIROC
										LASTI
										CIE
										POZZO
										LANE
										DA
										POCO
										A
										MEDIA
										MENTE
										ADDE
										NSATI

STIMA PARAMETRI GEOTECNICI PROVA Nr.2

TERRENI INCOERENTI

Densità relativa					
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Densità relativa
		(m)			(%)
Strato (1)	3.32	0.00-6.00	3.32	Meyerhof 1957	45.73
RIPORTI E					
MATERIALI					
RIMANEGGIA					
TI					
Strato (2)	17.38	6.00-8.70	17.38	Meyerhof 1957	100
DEPOSITI					
PIROCLASTIC					
ΙE					
POZZOLANE					
DA POCO A					
MEDIAMENT					
E ADDENSATI					

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Angolo d'attrito
Strate (1)	2 22	(m)	2.20	Shiqi Eulmai	
	5.52	0.00-0.00	5.52	1082 (ROAD	22.00
				1962 (KOAD BRIDGE	
RIMANEGGIA				SPECIFICATI	
TI				ON)	
Strato (2)	17.38	6.00-8.70	17.38	Shioi-Fukuni	31.15
DEPOSITI				1982 (ROAD	
PIROCLASTIC				BRIDGE	
ΙE				SPECIFICATI	
POZZOLANE				ON)	
DA POCO A					
MEDIAMENT					
E ADDENSATI					
Modulo di Youn	g				1
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Modulo di
		(m)			Young (Kg/cm ²)
Strato (1)	3.32	0.00-6.00	3.32	Bowles (1982)	
RIPORTI E				Sabbia Media	
MATERIALI					
RIMANEGGIA					
TI					
Strato (2)	17.38	6.00-8.70	17.38	Bowles (1982)	161.90
DEPOSITI				Sabbia Media	
PIROCLASTIC					
POZZOLANE					
DA POCO A MEDIAMENT					
Modulo Edometr	ico				
Descrizione	NSPT	Prof Strato	N Calcolo	Correlazione	Modulo
Descrizione	11011	rior. Strato		Conciazione	

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Modulo
		(m)			Edometrico
					(Kg/cm ²)
Strato (1)	3.32	0.00-6.00	3.32	Begemann 1974	34.28
RIPORTI E				(Ghiaia con	
MATERIALI				sabbia)	
RIMANEGGIA					
TI					
Strato (2)	17.38	6.00-8.70	17.38	Begemann 1974	63.16
DEPOSITI				(Ghiaia con	
PIROCLASTICI				sabbia)	
E POZZOLANE					
DA POCO A					
MEDIAMENTE					
ADDENSATI					

Classificazione A	AGI				
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Classificazione
		(m)			AGI
Strato (1)	3.32	0.00-6.00	3.32	Classificazione	SCIOLTO
RIPORTI E				A.G.I	
MATERIALI					
RIMANEGGIA					
TI					
Strato (2)	17.38	6.00-8.70	17.38	Classificazione	MODERATAM
DEPOSITI				A.G.I	ENTE
PIROCLASTIC					ADDENSATO
ΙE					
POZZOLANE					
DA POCO A					
MEDIAMENT					
E ADDENSATI					
Peso unità di vol	ume				

Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Peso Unità di Volume
					(t/m ³)
Strato (1)	3.32	0.00-6.00	3.32	Terzaghi-Peck	1.39
RIPORTI E				1948	
MATERIALI					
RIMANEGGIA					
TI					
Strato (2)	17.38	6.00-8.70	17.38	Terzaghi-Peck	1.57
DEPOSITI				1948	
PIROCLASTIC					
IE					
POZZOLANE					
DA POCO A					
MEDIAMENT					
E ADDENSATI					

Peso unità di volume saturo

Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Peso Unità Volume Saturo (t/m ³)
Strato (1) RIPORTI E MATERIALI RIMANEGGIA TI	3.32	0.00-6.00	3.32	Terzaghi-Peck 1948	1.87
Strato (2) DEPOSITI PIROCLASTICI E POZZOLANE DA POCO A MEDIAMENTE ADDENSATI	17.38	6.00-8.70	17.38	Terzaghi-Peck 1948	1.97

Modulo di Poisson

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Poisson
		(m)			
Strato (1)	3.32	0.00-6.00	3.32	(A.G.I.)	0.35
RIPORTI E					
MATERIALI					
RIMANEGGIA					
TI					
Strato (2)	17.38	6.00-8.70	17.38	(A.G.I.)	0.32
DEPOSITI					
PIROCLASTIC					
IE					
POZZOLANE					
DA POCO A					
MEDIAMENT					
E ADDENSATI					

Modulo di deformazione a taglio dinamico

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	G
		(m)			(Kg/cm ²)
Strato (1)	3.32	0.00-6.00	3.32	Ohsaki (Sabbie	200.81
RIPORTI E				pulite)	
MATERIALI					
RIMANEGGIA					
TI					
Strato (2)	17.38	6.00-8.70	17.38	Ohsaki (Sabbie	951.83
DEPOSITI				pulite)	
PIROCLASTIC					
IE					
POZZOLANE					
DA POCO A					
MEDIAMENT					
E ADDENSATI					

Qc (Resistenza punta Penetrometro Statico)

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Oc
		(m)			(Kg/cm ²)
Strato (1)	3.32	0.00-6.00	3.32	Robertson 1983	6.64
RIPORTI E					
MATERIALI					
RIMANEGGIA					
TI					
Strato (2)	17.38	6.00-8.70	17.38	Robertson 1983	34.76
DEPOSITI					
PIROCLASTICI					
E POZZOLANE					
DA POCO A					
MEDIAMENTE					
ADDENSATI					

ROCCA DI PAPA, SCUOLA VALLONE

Instrument: TEP-0032/01-09 Data format: 16 byte Full scale [mV]: n.a. Start recording: 11/05/21 12:35:29 End recording: 11/05/21 12:47:29 Channel labels: NORTH SOUTH; EAST WEST; UP DOWN GPS data not available

Trace length: 0h12'00". Analyzed 92% trace (manual window selection) Sampling rate: 128 Hz Window size: 20 s Smoothing type: Triangular window Smoothing: 10%

10¹

₽ _{10 °-}

10-1

Ó

ż

á

TROMINO® Grilla www.tromino.eu

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
7.00	7.00	140	0.42
47.00	40.00	300	0.41
inf.	inf.	450	0.40

Vs(0.0-30.0)=237m/s

[According to the SESAME, 2005 guidelines. Please read carefully the Grilla manual before interpreting the following tables.]

Max. H/V at 4.88 ± 0.14 Hz (in the range 0.0 - 64.0 Hz).

Criteria for a reliable H/V curve				
$f_0 > 10 / L_w$	4.88 > 0.50	OK		
n _c (f ₀) > 200	3217.5 > 200	OK		
$\sigma_A(f) < 2$ for $0.5f_0 < f < 2f_0$ if $f_0 > 0.5Hz$	Exceeded 0 out of 235 times	OK		
$\sigma_A(f) < 3$ for $0.5f_0 < f < 2f_0$ if $f_0 < 0.5Hz$				
Criteria for a clear H/V peak				
Exists f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	3.5 Hz	OK		
Exists f ⁺ in [f ₀ , 4f ₀] A _{H/V} (f ⁺) < A ₀ / 2	5.969 Hz	ОК		
A ₀ > 2	4.08 > 2	ОК		
$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$	0.02957 < 0.05	OK		
$\sigma_{\rm f} < \overline{\epsilon(f_0)}$	0.14413 < 0.24375	OK		
$\sigma_A(f_0) < \theta(f_0)$	0.455 < 1.58	OK		

Lw	window length
n _w	number of windows used in the analysis
$n_c = L_w n_w f_0$	number of significant cycles
f	current frequency
fo	H/V peak frequency
σf	standard deviation of H/V peak frequency
ε(f ₀)	threshold value for the stability condition $\sigma_f < \epsilon(f_0)$
Â ₀	H/V peak amplitude at frequency fo
A _{H/V} (f)	H/V curve amplitude at frequency f
f -	frequency between $f_0/4$ and f_0 for which $A_{H/V}(f^-) < A_0/2$
f +	frequency between f_0 and $4f_0$ for which $A_{H/V}(f^+) < A_0/2$
σ _A (f)	standard deviation of $A_{H/V}(f)$, $\sigma_A(f)$ is the factor by which the mean $A_{H/V}(f)$ curve should
()	be multiplied or divided
$\sigma_{\text{logH/V}}(f)$	standard deviation of log A _{H/V} (f) curve
$\theta(f_0)$	threshold value for the stability condition $\sigma_A(f) < \theta(f_0)$

Threshold values for σ_f and $\sigma_A(f_0)$					
Freq. range [Hz]	< 0.2	0.2 – 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ for $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
log $\theta(f_0)$ for $\sigma_{\text{logH/V}}(f_0)$	0.48	0.40	0.30	0.25	0.20

ROCCA DI PAPA, SCUOLA VIALE EUROPA

Report Masw 1

 Start recording: 11/05/21 15:31:10
 End recording: 11/05/21 15:36:22

 Trace length:
 0h05'12".

 Sampling rate:
 1024 Hz

Channel labels: NORTH SOUTH; EAST WEST; UP DOWN

Array geometry (x): 0.0 3.0 6.0 9.0 12.0 15.0 18.0 21.0 24.0 27.0 m.

COMMON SHOT GATER PER LE ONDE DI RAYLEIGH

COMMON SHOT GATER PER LE ONDE DI LOVE

MODELLED RAYLEIGH WAVE PHASE VELOCITY DISPERSION CURVE

Depth at the bottom of	Thickness [m]	Vs [m/s]	Poisson ratio
the layer [m]			
7.50	7.50	145	0.42
42.50	35.00	300	0.41
inf.	inf.	450	0.40

Vs (0.0 - 30.0) = 237 m/s

Report Masw 2

 Start recording:
 11/05/21
 15:47:04
 End recording:
 11/05/21
 15:53:00

 Trace length:
 0h05'56".
 Sampling rate:
 1024 Hz
 End recording:
 11/05/21
 15:53:00

Channel labels: B1; B2; B3; B4; B5; B6; B7; B8; B9; B10

Array geometry (x): 0.0 3.0 6.0 9.0 12.0 15.0 18.0 21.0 24.0 27.0 m.

COMMON SHOT GATER PER LE ONDE DI RAYLEIGH

COMMON SHOT GATER PER LE ONDE DI LOVE

MODELLED RAYLEIGH WAVE PHASE VELOCITY DISPERSION CURVE

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
8.20	8.20	155	0.42
48.20	40.00	300	0.41
inf.	inf.	450	0.40

Vs (0.0 - 30.0) = 239 m/s

